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In the papers [1 to 4] there was found a linear approximation for a system
of differential equations =z'= f(z,t) with discontinuous right-hand sides,
and there were proved certain theorems on the stability of continuous solu-
tions of this system. Below we consider the stabllity of periodic solutions
of this system 1n critical cases.

Let the system of differential equations be given in vector form

7= f(z 1) 0.1)

The function J(x,¢) 1s given in an n+ 1 dimensional curvilinear cylinder
¢ whose axis 1s a continuous integral curve 2z = 2z°(t) of the system (0.1).
Furthermore, the function s(z,t) is periodic of period T .

The hypersurfaces (the surfaces of discontinuity)
F,(z 1) =0, [Folz,t + 1) = F, (2, 1)] 0.2}
divide the cylinder ¢ 1into regions IIa and intersect the curve g= 2°(%)

at the points M, when ¢ = t,. The right-hand sides of the system (0.1)
catisfy the following conditiéns.

1. The. functions j&(:,t) are contlinuous in each of the regions I{a
(including their boundaries) and are continuously differentiable up to the
order ¥ , while during their passage through the surfaces (0.2), they and

all thelr partial derivatives up to the ~Nth order, have discontinuities of
the first kind only.

2. In the angular regions between the surfaces (0.2) and the planes
t =1t,, the following conditions are satisfied:

iz t) ()
NPy ™, | aann aM™™ . a‘znmn - +§
filz, 0= 1i(2° ) > £ & for (5, 1) > M,

The signs, plus and minus, correspond to the values t =ty + 0 and
t=1t, — 0.
a

3. The surfaces (0.2) are continuous, and at the points A{F they are
smooth up to the order ¥ , and along the integral curve «=2°(t

mem,.. .mn

(0.3)
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(P, #0 i [P, >T>0  (Po =3 Te s+ ‘3'-;1] ) 04

i=1 2=2° (1)
Let us introduce the varlable x = &—2°(t) . The system (0.1) takes on
the form ° o
z':p(x,t), p(xyt):f(z +x,t)——f(z,t) (0-5)
and the equations of the surfaces of discontinuity become
@, (z, ) =0, D, (r, 1) = F,(z°+ 0 (0.6)

It is obvious that the stability of the solution 2z = z°(t) =:z°( + 1)
of the problem (0.1) is equivalent to the null solution of the system (0.5).
The surfaces (0.6), in contrast to (0.2), will not be smooth at the points
M, but will have breaks. At the intersections of regions H, and
1. St I31; (in the sequel we shall call thege regions the central reglons)
the system (0.1) can be written in the form (*

: . 10" ) - m
=10 )+ DT T (G — ™ (e — 20 Riz, 1) (0.)
Y07y L...0z, P
The partial derivatives occurring in Formula (0.7) are contunuous in each
interval {, <t < 1,4, the functions F,(z,t) satisfy the conditions (0.8)

|Ri(z, )| <a|z[M,  jzi=V@—aPTt... T Gn— 2P (a = const >>0)

The surfaces of discontinuities can be written, to within infinitesimals
of order higher than ¥ , 1n the form
ty—t=Yh, gy g (0.9)

(in the neighborhood of the point M, of the lowest angular region).

We shall seek an approximate solution of Equation (0.5) in the neighbor-
hood of the point P({, ¢,) which lies on the surface of discontinulties in
the neighborhood of the point #, 1in the lower angular region

2=+ le t — )™+ d"p; (L, 1) . dp; i dp; 8p;
=5 T gn TR N =2 g pt e (010)

m=0 j=1

The point P({, t,) lles on the surface of discontinuities. Therefore,
My...m n
t,—h= Yk, no™.. L, r=G (L) (0.41)

to within infinitesimals of order higher than ¥ .

Now, if we assume ¢ = ty in (0.10), and if we replace t, —t, by 1its
expression in (0.11), we obtain

N—1
= G™(g) d* . .
xl—§i+1n2=0-('n—-*:1)—lmpi [gv tJ_G(C)]_*_P; (Cv tl) (01-)')

We expand the last expression in increasing powers of ¢(,,..., {,, and
we restrict the expansion to terms of order not greater than VN relative

to Ciseees €n 7t zzbiﬂlx-nm";lm,. . ;"mn (013)

The coefficients b;"r“"‘n depend only on those h;l"""u and §j14..jm for
which st o Ty Ky o T IaSIm (om0 omy). In parti-

cular, if m;+ ... + m,= 1, we obtain

*) Here, and in what follows we assume. unless explicltely stated otherwise.
that the indices of summation run through all possible values satisfying
the inequalities 1< my+ ... +mn <N
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b0:++010--.0 — bi" o= 5{,' + gihj (6,’5 is Kronecker's delta) (0.14)

Let us now conslder the system of differential equations

™f. (2, t
z = A ____.Zlif;._l__ 0™, zn""' (0.45)
mt 621"“. P 6znm"

We shall look for a solution of this system in the neighborhood of the
point P((, t,) which lies on the surface of discontinuities. Repeating the
evaluations which were performed above, we obtaln

wm =0 e ™ C<m+...tm<N) (0.16)

The coefficlents c?r"”% are evaluated by the same rules as the bgﬁ“”"n

Equation (0.16) is inverted (solved) to within infinitesimals of order
not higher than ¥

Li=Nd™ @)™, L () (0-47)

Now, if we substitute ¢, from (0.17) into (0.13) and if we limit our-
selves to infinitesimals of order not higher than ¥ , then (0.13) takes on

the form
=T L @) e mgt =S, (5,) (0.18)

The system (0.15), together with the conditions of discontinuities (0.18),
we will call a system of first approximation of the Nth order (*),

In particular, for ¥ = 1 , the system (0.15), (0.18) will take on the
form n

af, (2% t) <
o= o "wy,  at=a + ) Ehy (0.19)
= % =1

because of (0.14).
This system of the first approximation was considered in [2]. The system
(0.16),(0.18) will, from now on, play a fundamental role.

1., If we let X(t) denote the fundamental matix of the system (0.19),
then we shall have Equation

X¢t+1)=X00U (1.1)
where U 1s a constant nonsingular matirx. Let us apply the transformation
1
=Lt L{)y=X(@)e 4, A= —InU
t (0.5). @y, LO=X@ <
The system (0.5) will take on the form
¥ =q( 1), gy, ) =Lp— LWy (1.2)
If one takes the matix 4 in the Jordan form, then the system (1.2) will
have the form N
v =hyi+ oy + O Y™ @, 0+ R (v, 0) (1.3)
m=2
in central regions.

Here, |R{* (y,?) [<ay )y |V, Y(im)(y, t) are forms of order m in the vari-
ables: ¥y ,...,¥n With perlodic coefficlents which are discontinuous at t = tu.

Let us transform the system (1.3) with the aid of the nonlinear transfor-
mation to a form in which the terms of order less or equal to ¥ have con-
stant and everywhere equal coefficlents.

*) It is not difficult to prove that Equations (0.18) will hold for the
lower as well as for the upper angular regions.
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Such a transformation can be performed if the characteristic numbers of
the matrix 4 and the period 1T are not connected by any relations of the
form .

mihy F oot mphy— Ay = 4 2mitt (1.4)
where m,,... m, are nonnegative integers.

Let us assume that these conditions are fulfllled. We shall seek a trans-
formation in the form

y=u+ R4 T Ow™ . u @ <mt o Am <N (L5)

where the A;"l"'mn (t) are perlodic functions of period T which are dis-
contlnuous at & = ta

In the new variables the system (1.3) takes on the form
. My.e s,
g =My o qug A e ™ w4 Uy (u, 1)
C<m—+...+m,<N) (1.6)
The conditions on the discontinulties for the system of the first approxi-
mation of order ¥ of the system (1.3) has the form
- my...m _ _m
vt =y g T )™y, (1.7)

We will determine the discontinuities of the functions A{1 ™ (f) so that
the conditions of discontinulties of the system of first approximation of
the ~Nth order (1.6) may have the form

ui‘" = u"; (1'8)
to within terms of order higher than ¥ .
Let us show that this can be done. Indeed, Equation

EAim""mﬂ (ty +0)ua™. .. Uy ™ = 2 A4 (ty — 0)u™. .. up ™t

+ Z g,;n'"'mﬂ [u1 + 2 At (tz—0) Ut . uns"]ml cee

85...8 8 8
...[un+2A"‘ "(ta-—O)ull...un"] (1.9)
must be satisfled up to within terms of order higher than ¥
Equating the coefficients of 1llke powers of u; ..., Uy, W€ obtain the

required conditions on the discontinuities. In Equation 1.9) the quantities
ATw™n (t, — O)are assumed to be known; therefore AT My (¢, + 0) 1is uniquely
determined.

Equation (1.9), just as (1.8), must be taken not in the exact sense, but
with an accuracy up to infinitesimals of order higher than ¥ .

In order to be able to reduce the system (1.3) to the form (1.6), 1t is
necessary [5) that the coefficlents A1 ™. (f) of the transformation (1.5)
satisfy Equ_ations

n

LA™ T (3 mbe—ha) 4™ = =™ BT (1140)
§=1

Here, B™' ™ (f) are linear functions of the already known quantities
A% (1) With periodic (of period 1) coefficients which are discontinuous
at® ¢t = ty . We shall seek a perlodic solutlon of the system (1.10), which
has discontinuities at ¢t = ty; determined by (1.9).

Let us assume that all coefficients of the transformation (1.5 w11r1|ich
appear in B™ ™, (t) are periodic. We will show that then the ALy (1)
can be geleéted so that they are periodic. Indeed, if mh .. Mmphy —
— A; =0, then, in order that the A’i'"l'--mn (t) be perlodic, 1t 1s necessary

and sufficient that
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T h
a; "=%SB{'“ "By de 4 Y A AT
o

a=1
(B 4™ = 4™ 4 0) — AT, —0)) (1.11)

where % 1s the number of surfaces of discontinuilties.

All integrals exist because the discontlnuities of the integrands are of
the first order. If, however, mA +...+muA,— A;j=5=0, then Equation
(1.10) has a periodic solution for an arbitrary constant a'i"l"'mn. Therefore,
one can set 471" = 0.

Thus, one can determine successively the coefficlents of the transforma-
tion (1.5). This transformation is such that stability with respect to the
variables y, 1s equlvalent to stablllty with respect to the varlables wu,.

It 1s also obvious that the following estimate holds for the terms U, (u,t)
of the system (1.6)

[Us (u,8) | < aa| u |NH Hul=Vim*+. . F%al® (1.12)

2. Let us now go over to the investigatlon of the stablility of the solu-
tion =z = z°(t). Suppose that ! of the characteristic numbers of the
matrix 4 are equal to zero, and 2r of the characteristic numbers are
pure imaginary

Ai=0 (=1,...,1), A = 0 V=i, Aprryr = — O V=1 (k=1,...,r)
Let us assume that there exists no relation of the form

moy,+...+ mo, =0 for arbltrary integers my,...,mp, (2.1)

between the characteristic frequenciles.

Furthermore, let us assume that to the ! null values of the character-
istlic numbers of the matix 4 there correspond simple elementary divisors.
The rest of the characteristic numbers of the matrix 4 have negative real
parts (actually, if only one of the characteristic numbers of the matrix 4
i1s positive, then the solution =z = z°(t; will be unstable, as was shown in
[2]). The peculiarity of the system (1.6) (to which the system (0.1) can be
reduced in the centrdl reglons) 1s the fact that the varlables Up.gpi1s - -5 Un
of the stable part of the system enter into the critical part of the system
only in the terms U;(u, ) (i=1,...,1+ 2r).

Therefore, one can write the critical part of (1.6) more precisely in the

form m...m 0...0 m
u = Ay A D a OO yym upord + Ui 1)
E=1,2,....,042r2<m+ ... +my, <N) 2.2)
Now, we replace (in the system (2.2)) the variables which correspond to
the pure imaginary characteristic numbers of the matrix 4 by
id -i8
Upele = Qie k, Upirsk = Px€ k (2.3)

Then the system (2.2) takes the form

N
uj = 2 Vj(m) (waye ooy up P e e ) +Vilu, 0, 9, 8)

m==v
N
e = 0 B™ (s, ..o up, pre e, 0,) 4 Ry (v, 0, B, ) (2.4)
m=v
N
'ﬂk' = 2 ek(m) (ul. e UL, Ply oo, P,.) + Ok (uy P, ﬁt t) + (0
m=2

Here V™ (u,p), R{™ (4, p) and 0{™ (u, p) are mth order forms with con-
stant real coefficients (because the initial system (0.1) was real).
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After the transformation (2.3), the stable part of the system takes on
the form

N
Uy = }“iui+ai_1ui_1 -+ 2 Uk(m) (ur P '0) -+ Uk(uy p, 0, 1) (2'5)
m=2
where Ugm(u,p,ﬁ) are mth order forms in the variables U, ..., U0y, ...
oo PriMigarens - - o uy with periodic coefficients which are continuoud in L]

As 18 known [5 and 6] one can, by changing only the stable variables by
means of Formulas

LTI ST o P (7P VA T R | SR | | (2.6)
insure vhat the expansion of_the right-~hand side of the stable part of the
system of equations, for lygry1= ... = G, = 0, contain terms of the criti-

cal part of the system to a degree exceeding ¥ . After the application of
the transformation (2.6), the system (2.5) takes on the form

tr=MG+ ol + Ziwp, 0,0, 1) (2.7)
where Z; (u, p, ®, §,¢) satisfy the ilnequality
VZi(u, 00 8, 5 ) I<T(lo+ulN o+ ul|T]+1212) (r=const >0) (2.8)

for small |u + p| + {¢| .

In consequence of the transformation, the system (0.1), in the central
regions, takes on the form

uJ = VJ(\‘) (u7 p) + VJ (u’ P' ﬂi C’ t)! ﬁk' = mk + ek (u, P: ﬂl ;’ t)
P =R (w p)+ Re(w, 0, 850 0), b =Ml o By + Zi(w, Py B, L) 8)

Here Vi p, 9,8, t) ang Ry (u, 0,9 8, 2) are pertodic functions in @
and t , and they satisfy, for small enough |u + p| + {¢|, the inequalities

[Rj(u, 0, 8, 8 )| <a(lp+ul™ 4819 (o = const > 0)
[Viu,p, 8,8, ) | <Bi(lp +ul|”t+(L19) (B1 = const > 0) (2.10)

One can prove the following theorem,

(2.9)

Theorem . If the null solution of the system
ui =V we) =R ) @.11)

18 asymptotically stable then the null solution of the system (2.9) 18 asymp-
totically stable. Indeed, because of the as totic stability of the null
solution of the system (2.11), there exists F;ﬁ) a continuously differentiable
function V, (u,p) satisfying the following inequalities

v )
b fu+p) PV (u, p) sl w4912, |30 [<balutp P
v o7 (2.12)
(md__tl)(z.u)< —bsjut-p [P I'a_P';' Shelu-tp Pt

where B, b,, b, b, and D, are positive constants.

Let us construct the function V,({) for the linear part of the system
(2.7) which satisfies the inequalities

altBP<VsQ) e[ L R

av o OV Vs
(B, = 3 Frbtetoas—alth |3E]|<altl 249
s=l4ar+y
Next we observe the changes of the function
Vi p, 8 =Vi(up) +V, (D) (2.14)

along the discontinuous trajectories of the system (2.9) into which the
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continuous trajectories of (0.1) are transformed in the neighborhood of the
solution =z = 2°(t) .

In the central regions of the space (u,p,§,%,2), into which the central
regions of the space (x,%) are mapped, the function V(u‘,Ap,C) satisfies the

inequality
V(P O) <bylut pf + 22 (2.15)
Let us now evaluate V* with the ald of (2.9)
I n
av dv, Vs o Vi vy oV,
(dt )(z.s) (dt )(2.11) + (Tft—)o + 2 Bpy R+ Bu; Vit z o%; Zi (216)
k=1 =1 i=l+2r+1

Because of the estimates (2.12),(2.13),(2.8) and (2.10) we obtain the
inequalities

L, oV L
II‘Z,'?;,;Rw Vi Shol@+B) utp B utp MLy (247)
=1 =1

14
N | <edtitioFul™ +lutpl0Li+1Tp (2.48)

i=l+2r+1
Ift N>B+vand |u-+p|+|il are small enough, then we obtain, for

(2.16), the estimate
av
(G Jeaw<—dulu + oB™ — dy b2 < —pt o + |+ P (219
where d, and d; are positive constants.

Since the sonstant p in the inequaiities (2.12) is sufficiently large
[7], it follows from (2.15) that

Vg, p, < (lu+tpi+[L1 (2.20)
Comparing the inequalitie¢s (2.19) and (2.20), we obtain

av 1
zr <—w (n172V) /2{(B+v) (2.21)

V< Vot +VoVB (e —to)]™/N, =Ny, XN ) Ny =3 (B v 4-1) (2.22)

Let us now watch the changes of Vsu,p,c) in the angular reglions. Because
the null solution of the system (2.11) 1s by hypothesis asymptotically sta-
ble, it will also be stable for the system

N N
ui = D) Vi™up) ey = 2 R™(u, p) G=1....Lk=1,..7)
m=v N m=v
=M+ gt Giat+ ) 2™ (w p, 8, 0) (i=l+42r+1,...,n0)
m=2
N>V +1)B—1 (2.23)

To the continuous solution of the system (2.23) there corresponds a dis~
continuous solution of the system (0.16),(0.18) of the first approximation
of the Nth order.

, If we denote by n the vector n =u +p + (, then v(n*) = ¥(n~) when
nen.

Thus,

Vit =V @, t))+o(lz (V) tor 2 =8(z) +o(z|N) (2.24)

Next, let us denote by WN(x,,t,) the point of intersection of a trajectory
of the system (0.5) with the surface of discontinuities @ {(z,f) = 0, Then
by the construction of the system of the first approximatlon
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z=z*4-o(lz|") (2.25)
where x 1s a point on the trajectory of the system (0.5) for t = to
From the inequalities (2.24) and (2.25) it follows that

V(z, t,) =V (&7, t,) +o(z|¥*) (2.26)
This implies directly that
— ke VN, 1) — VN2, t ) < (2.27)

where x 1s an arbitrary small positive number.

Let us select a cylinder of radius & so small that the time which the
trajectory stays in any angular region be sufficiently small and that

® < BT (T =min |t

The* radius of the cylinder can be chosen so small that the planes
t=1t"= 1, [ta,, T t,] do not intersect the angular regions inslde the
cylinder ¢ | *¥

The coefficlent of growth of V(x,t) is finite [2] in the angular reglons.
Let us denote the largest coefficient of growth by ¢ . We take the initlal
point x,* = x(¢,*) inside the cylinder V = &;= /¢

As ¢ changes within the bounds 4H* <! < %* ,the function V(x,t), taken
along the integral curve of the system (0.5), decreases in the central region
to the point {x,,t,) which 1s the intersection of the curve with the surface
of discontinuity. Next, in the angular region, it can increase, but this
increase will be compensated by Jumps of the function for ¢ = ta .

Indeed, because of (2.22)

(2.28)

a+1—ta|)

Vizy, ) <Vill + ViV B(ti—®)]™ /N, Va=V(n*, 1*) (2.29)
Purthermore, (2,30)
Vi, 1)<V (@, b) [t + VY (o, ) B, — )] M Vi [+ ViV B (g — 0]/
Because of (2.27)
Viz, t,)<V(e, ) [1 —aWNi(z, e )17/ N (2.31)
Using (2.31) and (2.30), we obtain
Vi(z, 1) <Viit + Vil [B (e, — 0 —xl) ™
In the next central region the function V(x,t) will decrease according
b0 (2:29)  y o, 1) < Vaft 4+ VAV B (1% — %) — w1 M <V
since by hypothesis x satisfies the inequality (2.28).

If one takes into conslderation that the coefficient of growth of V(x,t)
in the angular regions does nct exceed ¢ , one may conclude that the inte-
gral curve, for 1,*< t < t,* passes through the cylinder V = & . Repeating
the preceding argument for the following regions with f* <t < tg*, ...
cees t* <Kt 'y, and so on, we obtain

Vier < Vi A+ VMRt — %) — o) M Vil 4 VVET — 017Ny (2.32)

Because of the inequality (2.32), the sequence {V;] has a limit.
let us suppose that this limit 1s not zero, 1l.e. 1im ¥,> O as t —~ =
Then V¥ must satisfy the inequality
VSV V@I — /M e VO
Thus, 1t is proved that 1lim V,= 0 as { = = ; this implies the asymp-
totic stability of the solution =z = z°(t) of the system (0.1).

The theorem asserts furthermore, that to answer the questilon on the sta-
bility, one must seek an approximation of order v , because the coefficients
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of the system (2.11) depend only on the coefficients of an approximation of
order v .

In conclusion let us consider the case when the matrix 4 has one char-
acteristic number equal to zero, while the remaini characteristic numbers
have negative real parts. In thls case the system (2.11) will consist of
one equation

U = gul,v_

Then the true theorem reads as follows: if v 1s an odd number, and ¢g<O0,
then the solution =z = 2°(¢) of the system (0.1) is asymptotically stable.
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