STABIIITY OF SOLUTIONS OF A SYSTEM OF DIFFERENMIAL EQUATIONS WITH DISCONTINUOUS RIGHT-HAND SIDES IN THE CRITICAL CASE

(USTOICHIVOST' RESHENII SISTEMY DIFHRRENTSIAL'NKIGI URAVNENII S RAZRYYAYMI PRAVYMI CHASTIAMI V KRIMICRESKOM SLUCHAE)

PMM Vol.29, № 5, 1965, pp. 931-938
V.Ia.TURIN
(Moscow)
(Received June 1, 1964)

In the papers [1 to 4] there was found a linear approximation for a system of differential equations $z^{\prime}=f(z, t)$ with discontinuous right-hand sides, and there were proved certain theorems on the stability of continuous solutions of this system. Below we consider the stability of periodic solutions of this system in critical cases.

Let the system of differential equations be given in vector form

$$
\begin{equation*}
\dot{z}=f(z, t) \tag{0.1}
\end{equation*}
$$

The function $f(x, t)$ is given in an $n+1$ dimensional curvilinear cylinder C whose axis is a continuous integral curve $z=z^{\circ}(t)$ of the system (0.1). Furthermore, the function $f(z, t)$ is periodic of period τ.

The hypersurfaces (the surfaces of discontinuity)

$$
\begin{equation*}
F_{\alpha}(z, t)=0, \quad\left[F_{\alpha}(z, t+\tau)=F_{\alpha}(z, t)\right] \tag{0.2}
\end{equation*}
$$

divide the cylinder C into regions H_{α} and intersect the curve $z=z^{\circ}(t)$ at the points $M_{\text {a }}$ when $t=t_{\alpha}$. The right-hand sides of the system (0.1) satisfy the follớwing conditions.

1. The functions $f_{1}(z, t)$ are continuous in each of the regions H_{α} (including their boundaries) and are continuously differentiable up to the order N, while during their passage through the surfaces (0.2), they and all their partial derivatives up to the N th order, have discontinuities of the first kind only.
2. In the angular regions between the surfaces (0.2) and the planes $t=i_{\alpha}$, the following conditions are satisfied:

$$
\begin{gather*}
\frac{\partial^{m} f_{i}(z, t)}{\partial t^{m_{0}} \partial_{z_{1} m_{1}} \ldots \partial z_{n}^{m_{n}}}-\frac{\partial^{m} f_{i}\left(z^{\circ}, t\right)}{\partial t^{m_{0}} \partial z_{1}^{m_{1}} \ldots \partial_{z_{n}}^{m_{n}}} \rightarrow \pm \xi_{i}^{m_{0} m_{1} \ldots m_{n}} \\
f_{i}(z, t)-f_{i}\left(z^{\circ}, t\right) \rightarrow \pm \xi_{i} \quad \text { for } \quad(z, t) \rightarrow M_{\alpha} \tag{0.3}
\end{gather*}
$$

The signs, plus and minus, correspond to the values $t \Rightarrow t_{\alpha}+0$ and
$t=t_{\alpha}-0$.
3. The surfaces (0.2) are continuous, and at the points M_{d} they are smooth up to the order N, and along the integral curve $z=z^{\boldsymbol{\alpha}}(t)$

$$
\begin{equation*}
\left(F_{\alpha} \cdot\right)_{M_{\alpha}} \neq 0\left(F_{\alpha}\right)_{M_{\alpha}}^{+} /\left(F_{\alpha} \cdot\right)_{M_{\alpha}}^{-} \geqslant \Gamma>0 \quad\left(F_{\alpha} \cdot=\left[\sum_{i=1}^{n} \frac{\partial F_{\alpha}}{\partial z_{i}} f_{i}+\frac{\partial F_{\alpha}}{\partial t}\right]_{z=z^{0}(t)}\right) \tag{0.4}
\end{equation*}
$$

Let us introduce the variable $x=z-z^{\circ}(t)$. The system (0.1) takes on the form

$$
\begin{equation*}
x^{\cdot}=p(x, t), \quad p(x, t)=f\left(z^{\circ}+x, t\right)-f\left(z^{\circ}, t\right) \tag{0.5}
\end{equation*}
$$

and the equations of the surfaces of discontinuity become

$$
\begin{equation*}
\Phi_{\alpha}(x, t)=0, \quad \Phi_{\alpha}(x, t) \equiv F_{\alpha}\left(z^{0}+x, t\right) \tag{0.6}
\end{equation*}
$$

It is obvious that the stability of the solution $z=z^{\circ}(t) \equiv z^{\circ}(t+\tau)$ of the problem (0.1) is equivalent to the null solution of the system (0.5). The surfaces (0.6), in contrast to (0.2), will not be smooth at the points M_{a}, but will have breaks. At the intersections of regions H_{a} and $t_{\alpha}^{\alpha} \leqslant t \leqslant t_{\alpha+1}$ (in the sequel we shall call these regions the central regions) the system (0.1) can be written in the form (*)

$$
\begin{equation*}
z_{i}=f_{i}\left(z^{0}, t\right)+\sum \frac{1}{m!} \frac{\partial^{m} f_{i}\left(z^{0}, t\right)}{\partial z_{1}{ }^{m_{1}} \ldots \partial z_{n}{ }^{m_{n}}}\left(z_{1}-z_{1}\right)^{m_{1}} \ldots\left(z_{n}-z_{n}{ }^{\circ}\right)^{m_{n}}+R_{i}(z, t) \tag{0.7}
\end{equation*}
$$

The partial derivatives occurring in Formula (0.7) are contunuous in each interval $t_{\alpha} \leqslant t \leqslant t_{\alpha+1}$, the functions $R_{1}(z, t)$ satisfy the conditions (0.8)

$$
\left|R_{i}(z, t)\right|<a|x|^{N+1}, \quad|x|=\sqrt{\left.\left(z_{1}-z_{1}\right)^{\circ}\right)^{2}+\ldots+\left(z_{n}-z_{n}{ }^{0}\right)^{2}} \quad(a=\text { const }>0)
$$

The surfaces of discontinuities can be written, to within infinitesimals of order higher than N, in the form

$$
\begin{equation*}
t_{\alpha}-t=\sum{h_{\alpha}}^{m_{1} \ldots m_{n_{x_{2}}}}{ }^{m_{1}} \ldots x_{n}{ }^{m_{n}} \tag{0.9}
\end{equation*}
$$

(in the neighborhood of the point M_{α} of the lowest angular region).
We shall seek an approximate solution of Equation (0.5) in the neighborhood of the point $P\left(6, t_{1}\right)$ which lies on the surface of discontinuities in the neighborhood of the point M_{α} in the lower angular region

$$
\begin{equation*}
x_{i}=\zeta_{i}+\sum_{m=0}^{N-1} \frac{\left(t-t_{1}\right)^{m+1}}{(m+1)!} \frac{d^{m} p_{i}\left(\zeta, t_{1}\right)}{d t^{m}}+p_{i}^{*}(\zeta, t), \frac{d p_{i}}{d t}=\sum_{j=1}^{n} \frac{\partial p_{i}}{\partial x_{j}} p_{j}+\frac{\partial p_{i}^{i}}{\partial t} \tag{0.10}
\end{equation*}
$$

The point $P\left(\zeta, t_{1}\right)$ lies on the surface of discontinuities. Therefore,

$$
\begin{equation*}
t_{\alpha}-t_{1}=\sum h_{\alpha}^{m_{1} \ldots m_{n}} \zeta_{1}^{m_{1}} \ldots \zeta_{n}^{m n_{n}}=G(\zeta) \tag{0.11}
\end{equation*}
$$

to within infinitesimals of order higher than N.
Now, if we assume $t=t_{\alpha}$ in (0.10), and if we replace $t_{\alpha}-t_{1}$ by its expression in (0.11), we obtain

$$
\begin{equation*}
x_{i}=\zeta_{i}+\sum_{m=0}^{N-1} \frac{G^{m+1}(\zeta)}{(m+1)!} \frac{d^{m}}{d t^{m}} p_{i}\left[\zeta, t_{\alpha}-G(\zeta)\right]+p_{i}^{*}\left(\zeta, t_{\alpha}\right) \tag{0.1ㄹ}
\end{equation*}
$$

We expand the last expression in increasing powers or $\sigma_{1}, \ldots, \sigma_{1}$, and we restrict the expansion to terms of order not greater than N relative to $\zeta_{1}, \ldots, \delta_{n}$

$$
\begin{equation*}
x_{i}{ }^{+}=\sum b_{i}^{m_{1} \ldots m_{n \zeta_{1}}{ }^{1 m_{1}}} \ldots \zeta_{n}{ }_{n}^{m_{n}} \tag{0.13}
\end{equation*}
$$

The coefficients $b_{j}^{n_{1} \ldots m_{n}}$ depend only on those $h_{a}^{s_{1} \cdots{ }_{n}}$, and $\xi_{\alpha}^{j_{1} \ldots j_{n}}$, for which $s_{1}+\ldots+s_{n} \leqslant m_{1} i_{1}+\ldots+i_{n} \leqslant m\left(m \ldots m_{1}+\ldots+m_{n}\right){ }^{s_{\alpha}}$ In particular, if $m_{1}+\ldots+m_{\mathrm{a}}=1$, we obtain

[^0]\[

$$
\begin{equation*}
b_{i}{ }^{0 \ldots 010 \ldots 0}=b_{i j}=\delta_{i j}+\xi_{i} h_{j} \text { (} \delta_{i j} \text { is Kronecker's delta) } \tag{0.14}
\end{equation*}
$$

\]

Let us now consider the system of differential equations

$$
\begin{equation*}
x_{i}^{*}=\sum \frac{1}{m!} \frac{\partial^{m} f_{i}\left(z^{\circ}, t\right)}{\partial z_{1}^{m_{1}} \ldots \partial z_{n}^{m_{n}}} x_{1}^{m_{1}} \ldots x_{n}^{m_{n}} \tag{0.15}
\end{equation*}
$$

We shall look for a solution of this system in the neighborhood of the point $P\left(\zeta, t_{1}\right)$ which lies on the surface of discontinuities. Repeating the evaluations which were performed above, we obtain

$$
\begin{equation*}
x_{i}^{-}=\zeta_{i}+\sum c_{i}^{m_{1} \ldots m_{n}}{ }_{1}^{m_{1}} \ldots \zeta_{n}^{m_{n}} \quad\left(2 \leqslant m_{1}+\ldots+m_{n} \leqslant N\right) \tag{0.16}
\end{equation*}
$$

The coefficients $c_{i}^{m_{1}} \ldots m_{n}$ are evaluated by the same rules as the $b_{i}^{m_{1} \ldots m_{n}}$.
Equation (0.16) is inverted (solved) to within infinitesimals of order not higher than N

$$
\begin{equation*}
\zeta_{i}=\sum d_{i}^{m_{1} \ldots m_{n}\left(x_{1}^{-}\right)^{m_{1}} \ldots\left(x_{n}^{-}\right)^{m_{n}}, ~} \tag{0.17}
\end{equation*}
$$

Now, if we substitute δ_{1} from (0.17) into (0.13) and if we limit ourselves to infinitesimals of order not higher than N, then (0.13) takes on the form

$$
\begin{equation*}
x_{i}^{+}=\sum l_{i}{ }^{m_{1} \ldots m_{n}\left(x_{1}-\right)^{m_{1}}} \ldots\left(x_{n}^{-}\right)^{m_{n}} \quad \text { or } \quad x_{\alpha}^{+}=S_{\alpha}\left(x_{\alpha}^{-}\right) \tag{0.18}
\end{equation*}
$$

The system (0.15), together with the conditions of discontinuities (0.18), we will call a system of first approximation of the N th order (*).

In particular, for $N=1$, the system (0.15), (0.18) will take on the form

$$
\begin{equation*}
x_{i}^{\cdot}=\sum_{j=1}^{n} \frac{\partial f_{i}\left(z^{\circ}, t\right)}{\partial z_{j}} x_{j}, \quad x_{i}^{+}=x_{i}^{-}+\sum_{j=1}^{n} \xi_{i} h_{j} x_{j}^{-} \tag{0.19}
\end{equation*}
$$

because of (0.14).
This system of the first approximation was considered in [2]. The system (0.16), (0.18) will, from now on, play a fundamental role.

1. If we let $X(t)$ denote the fundamental matix of the system (0.19), then we shall have Equation

$$
\begin{equation*}
X(t+\tau)=X(t) U \tag{1.1}
\end{equation*}
$$

where U is a constant nonsingular matirx. Let us apply the transformation
to (0.5).

$$
x=L(t) y, \quad L(t)=X(t) e^{-A t}, \quad A=\frac{1}{\tau} \ln U
$$

The system (0.5) will take on the form

$$
\begin{equation*}
y^{*}=q(y, t), \quad q(y, t)=L^{-1} p-L^{-1} L^{\cdot} y \tag{1.2}
\end{equation*}
$$

If one takes the matix A in the Jordan form, then the system (1.2) will have the form

$$
\begin{equation*}
y_{i}^{*}=\dot{\lambda}_{i} y_{i}+\alpha_{i-1} y_{i-1}+\sum_{m=2}^{N} Y_{i}^{(m)}(y, t)+R_{i}^{*}(y, t) \tag{1.3}
\end{equation*}
$$

in central regions.
Here, $\left|R_{i}^{*}(y, t)\right|<a_{1}|y|^{N+1}, Y_{i}^{(m)}(y, t) \quad$ are forms of order m in the variables $\psi_{1}, \ldots, \nu_{n}$ with periodic coefficients which are discontinuous at $t=t_{\alpha}$.

Let us transform the system (1.3) with the aid of the nonlinear transformation to a form in which the terms of order less or equal to N have constant and everywhere equal coefficients.

[^1]Such a transformation can be performed if the characteristic numbers of the matrix A and the period τ are not connected by any relations of the form

$$
\begin{equation*}
m_{1} \lambda_{1}+\ldots+m_{n} \lambda_{n}-\lambda_{8}= \pm 2 \pi i \tau^{-1} \tag{1.4}
\end{equation*}
$$

where $m_{1}, \ldots m_{\mathrm{a}}$ are nonnegative integers.
Let us assume that these conditions are fulfilled. We shall seek a transformation in the form

$$
\begin{equation*}
y_{i}=u_{i}+\sum A_{i}^{\left.m_{1} \ldots m_{n}(t) u_{1}^{m_{1}} \ldots u_{n}^{m n} \quad\left(2 \leqslant m_{1}+\ldots+m_{n} \leqslant N\right)\right) ~(2)} \tag{1.5}
\end{equation*}
$$

where the $A_{i}^{m_{1} \ldots m_{n}(t)}$ are periodic functions of period T which are discontinuous at $t=t_{\alpha}$

In the new variables the system (1.3) takes on the form

$$
\begin{gather*}
u_{i}^{*}=\lambda_{i} u_{i}+\alpha_{i-1} u_{i-1}+\sum a_{i} m_{1} \ldots m_{n_{1}}{ }^{m_{1}} \ldots u_{n}^{m_{n}}+U_{i}(u, t) \\
\left(2 \leqslant m_{1}+\ldots+m_{n} \leqslant N\right) \tag{1.6}
\end{gather*}
$$

The conditions on the discontinuities for the system of the first approximation of order N of the system (1.3) has the form

$$
\begin{equation*}
y_{i}^{+}=y_{i}^{-}+\sum g_{i}^{m_{1} \ldots m_{n}\left(y_{1}^{-}\right)^{m_{1}} \ldots\left(y_{n}^{-}\right)^{m_{n}}, ~} \tag{1.7}
\end{equation*}
$$

We will determine the discontinuities of the functions $A_{i}^{m_{1} \ldots m_{n}(t)}$ so that the conditions of discontinuities of the system of first approximation of the N th order (1.6) may have the form

$$
\begin{equation*}
u_{i}^{+}=u_{i}^{-} \tag{1.8}
\end{equation*}
$$

to within terms of order higher than N.
Let us show that this can be done. Indeed, Equation

$$
\begin{gather*}
\sum A_{i}^{m_{1} \ldots m_{n}\left(t_{\alpha}+0\right) u_{1}^{m_{1}} \ldots u_{n}^{m_{n}}=\sum A_{i}^{m_{1} \ldots m_{n}}\left(t_{\alpha}-0\right) u_{1}^{m_{1}} \ldots u_{n}^{m_{n}}+} \begin{array}{c}
+\sum g_{i}^{m_{1} \ldots m_{n}}\left[u_{1}+\sum A_{1}^{s_{1} \ldots s_{n}}\left(t_{\alpha}-0\right) u_{1}^{s_{1}} \ldots u_{n}^{s_{n}}\right]^{m_{1}} \ldots \\
\ldots\left[u_{n}+\sum A_{n}^{s_{1} \ldots s_{n}}\left(t_{\alpha}-0\right) u_{1}^{s_{1}} \ldots u_{n}^{s_{n}}\right]
\end{array} .
\end{gather*}
$$

must be satisfied up to within terms of order higher than N
Equating the coefficients of like powers of $u_{1} \ldots, u_{n}$, we obtain the required conditions on the discontinuities. In Equation (1.9) the quantities $A_{i}^{m_{1} \ldots m_{n}}\left(t_{\alpha}-0\right)$ are assumed to be known; therefore $A_{i}^{m_{1} \ldots m_{n}\left(t_{\alpha}+0\right) \text { is uniquely } 10}$ determined.

Equation (1.9), just as (1.8), must be taken not in the exact sense, but with an accuracy up to infinitesimals of order higher than N.

In order to be able to reduce the system (1.3) to the form (1.6), it is necessary [5] that the coefficients $A_{i}^{m_{1}} \cdots m_{n}(t)$ of the transformation (1.5) satisfy Equations

$$
\begin{equation*}
\frac{d}{d t}{A_{i}}^{m_{1} \ldots m_{n}}+\left(\sum_{s=1}^{n} m_{s} \lambda_{s}-\lambda_{i}\right){A_{i}}^{m_{1} \ldots m_{n}}=-a_{i}^{m_{1} \ldots m_{n}}+B_{i}^{m_{1} \ldots m_{n}}(t) \tag{1.10}
\end{equation*}
$$

Here, $B_{i}^{m_{1} \cdots m_{n}(t)}$ are ilnear functions of the already known quantities $A^{k_{1} \ldots k_{n}(t)}$ with periodic (of period T) coefficients which are discontinuous $\operatorname{at}^{{ }^{1}} t=t_{\alpha}$. We shall seek a periodic solution of the system (1.10), which has discontinuities at $t=t_{\alpha}$ determined by (1.9).

Let us assume that all coefficients of the transformation (1.5) which
 can be selected so that they are periodic. Indeed, if $m_{1} \lambda_{1}+\ldots+m_{n} \lambda_{n}-$ $-\lambda_{i}=0$, then, in order that the $A_{i}^{m} \ldots m_{n}(t)$ be periodic, it is necessary and sufficient that

$$
\begin{gather*}
a_{i}^{m_{1} \ldots m_{n}}=\frac{1}{\tau} \int_{0}^{\tau} B_{i}^{m_{1} \ldots m_{n}}(t) d t+\sum_{\alpha=1}^{h} \Delta_{\alpha} A_{i}^{m_{1} \ldots m_{n}} \\
\left(\Delta_{\alpha} A_{i}^{m_{1} \ldots m_{n}}=A_{i}^{m_{1} \ldots m_{n}}\left(t_{\alpha}+0\right)-A_{i}^{m_{1} \ldots m_{n}}\left(t_{\alpha}-0\right)\right) \tag{1.11}
\end{gather*}
$$

where h is the number of surfaces of discontinuities.
All integrals exist because the discontinuities of the integrands are of the first order. If, however, $m_{1} \lambda_{1}+\ldots+m_{n} \lambda_{n}-\lambda_{i} \neq 0$, then Equation (1.10) has a periodic solution for an arbitrary constant $a_{i}^{m} \cdots m_{n}$. Therefore, one can set $a_{i}^{m_{1}} \cdots m_{n}=0$.

Thus, one can determine successively the coefficients of the transformation (1.5). This transformation is such that stability with respect to the variables y_{1} is equivalent to stability with respect to the variables u_{1}.

It is also obvious that the following estimate holds for the terms $U_{1}(u, t)$ of the system (1.6)

$$
\begin{equation*}
\left|U_{i}(u, t)\right|<a_{2}|u|^{N+1} \quad\left(|u|=\sqrt{\left|u_{1}\right|^{2}+\cdots+\left|u_{n}\right|^{2}}\right) \tag{1.12}
\end{equation*}
$$

2. Let us now go over to the investigation of the stability of the solution $z=z^{\circ}(t)$. Suppose that l of the characteristic numbers of the matrix A are equal to zero, and $2 r$ of the characteristic numbers are pure imaginary

$$
\lambda_{j}=0 \quad(j=1, \ldots, l), \quad \lambda_{k+l}=\omega_{k} \sqrt{-1}, \quad \lambda_{k+l+r}=-\omega_{k} \sqrt{-1} \quad(k=1, \ldots, r)
$$

Let us assume that there exists no relation of the form

$$
\begin{equation*}
m_{1} \omega_{1}+\ldots+m_{r} \omega_{r}=0 \quad \text { for arbitrary integers } m_{1}, \ldots, m_{r} \tag{2.1}
\end{equation*}
$$

between the characteristic frequencies.
Furthermore, let us assume that to the l null values of the characteristic numbers of the matix A there correspond simple elementary divisors. The rest of the characteristic numbers of the matrix A have negative real parts (actually, if only one of the characteristic numbers of the matrix A is positive, then the solution $z=z^{\circ}(t)$ will be unstable, as was shown in [2]). The peculiarity of the system (1.6) (to which the system (0.1) can be reduced in the central regions) is the fact that the varlables $u_{l+2 r+1}, \ldots, u_{n}$ of the stable part of the system enter into the critical part of the system only in the terms $U_{i}(u, t)(i=1, \ldots, l+2 r)$.

Therefore, one can write the critical part of (1.6) more precisely in the form

$$
\begin{gather*}
u_{i}{ }^{*}=\lambda_{i} u_{i}+\sum a_{i}{ }^{m_{1} \ldots m_{l+2 r}{ }^{0} \ldots 0} u_{1} m_{1} \ldots u_{l+2 r}^{m_{l+2 r}}+U_{i}(u, t) \\
\left(i=1,2, \ldots, l+2 r ; 2 \leqslant m_{1}+\ldots+m_{l+2 r} \leqslant N\right) \tag{2.2}
\end{gather*}
$$

Now, we replace (in the system (2.2)) the variables which correspond to the pure imaginary characteristic numbers of the matrix A by

$$
\begin{equation*}
u_{l+k}=\mathrm{p}_{k} e^{i \theta_{k}}, \quad u_{l+r+k}=\mathrm{p}_{k} e^{-i \theta_{k}} \tag{2.3}
\end{equation*}
$$

Then the system (2.2) takes the form

$$
\begin{align*}
& u_{j}^{*}=\sum_{m=v}^{N} V_{j}^{(m)}\left(u_{1}, \ldots, u_{l}, \rho_{1}, \ldots, \rho_{r}\right)+V_{j}(u, \rho, \vartheta, t) \\
& \rho_{k} \cdot=\sum_{m=v}^{N} R_{k}{ }^{(m)}\left(u_{1}, \ldots, u_{l}, \rho_{1}, \ldots, \rho_{r}\right)+R_{k}(u, \rho, \vartheta, t) \tag{2.4}\\
& \vartheta_{k} \cdot=\sum_{m=2}^{N} \theta_{k}{ }^{(m)}\left(u_{1} \ldots u_{l}, \rho_{1}, \ldots, \rho_{r}\right)+\theta_{k}(u, \rho, \vartheta, t)+\omega_{k}
\end{align*}
$$

Here $V_{j}^{(m)}(u, \rho), R_{f}^{(m)}(u, \rho)$ and $\theta_{k}^{(m)}(u, \rho)$ are m th order forms with constant real ${ }^{j}$ coefficients (because the initial system (0.1) was real).

After the transformation (2.3), the stable part of the system takes on the form

$$
\begin{equation*}
u_{i}^{*}=\lambda_{i} u_{i}+\alpha_{i-1} u_{i-1}+\sum_{m=2}^{N} U_{k}^{(m)}(u, \rho, \theta)+U_{k}(u, \rho, \vartheta, t) \tag{2.5}
\end{equation*}
$$

where $U_{k}^{(m)}(u, \rho, \vartheta) \quad$ are m th order forms in the variables $u_{1}, \ldots, u_{l}, \rho_{1}, \ldots$ $\ldots \rho_{r}, u_{l+2 r+1}, \ldots, u_{n}$ with periodic coefficients which are continuous in \hat{Q}.

As is known [5 and 6] one can, by changing only the stable variables by means of Formulas

$$
\begin{equation*}
u_{i}=\zeta_{i}+\varphi_{i}\left(u_{1}, \ldots, u_{l}, \rho_{1}, \ldots, \rho_{r}, \boldsymbol{\vartheta}_{1} \ldots \boldsymbol{\vartheta}_{r}\right) \tag{2.6}
\end{equation*}
$$

Insure that the expansion of the right-hand side of the stable part of the system of equations, for $\zeta_{l+2 r+1}=\ldots=\zeta_{n}=0$, contain terms of the critical part of the system to a degree exceeding N. After the application of the transformation (2.6), the system (2.5) takes on the form

$$
\begin{equation*}
\zeta_{i}=\lambda_{i} \zeta_{i}+\alpha_{i-1} \zeta_{i-1}+Z_{i}(u, \rho, \vartheta, \zeta, t) \tag{2.7}
\end{equation*}
$$

where $Z_{i}(u, \rho, \theta, \zeta, t)$ satisfy the inequality

$$
\begin{equation*}
\left|Z_{i}(u, \rho, \theta, \zeta, t)\right|<\tau\left(|\rho+u|^{N}+|\rho+u||\zeta|+|\zeta|^{2}\right) \quad(\Upsilon=\text { const }>0) \tag{2.8}
\end{equation*}
$$

for small $|u+\rho|+|\zeta|$.
In consequence of the transformation, the system (0.1), in the central regions, takes on the form

$$
\begin{gather*}
u_{j}^{\cdot}=V_{j}^{(v)}(u, \rho)+V_{j}(u, \rho, \vartheta, \zeta, t), \quad \hat{\vartheta}_{k}=\omega_{k}+\theta_{k}(u, \rho, \vartheta, \zeta, t) \\
\rho_{k}^{\cdot}=R_{k}^{(v)}(u, \rho)+R_{k}(u, \rho, \vartheta, \zeta, t), \quad \zeta_{i}=\lambda_{i} \zeta_{i}+\alpha_{i-1} \zeta_{i-1}+Z_{i}(u, \rho, \vartheta, \zeta, t) \tag{2.9}
\end{gather*}
$$

Here $V_{j}(u, \rho, \vartheta, \zeta, t)$ and $R_{k}(u, \rho, \vartheta, \zeta, t)$ are periodic functions in θ and t, and they satisfy, for small enough $|u+p|+|\sigma|$, the inequalities

$$
\begin{array}{rr}
\left|R_{j}(u, \rho, \vartheta, \zeta, t)\right|<\alpha\left(|\rho+u|^{v+1}+|\zeta|^{2}\right) & (\alpha=\text { const }>0) \\
\left|V_{j}(u, \rho, \vartheta, \zeta, t)\right|<\beta_{1}\left(|\rho+u|^{v+1}+|\zeta|^{2}\right) & \left(\beta_{1}=\text { const }>0\right) \tag{2.10}
\end{array}
$$

One can prove the following theorem.
Theorem. If the null solution of the system

$$
\begin{equation*}
u_{j}^{*}=V_{j}^{(v)}(u, \rho), \quad \rho_{k}^{\cdot}=R_{k}^{(v)}(u, \rho) \tag{2.11}
\end{equation*}
$$

Is asymptotically stable then the null solution of the system (2.9) is asymptoticaliy stable. Indeed, because of the asymptotic stability of the null solution of the system (2.11), there exists [7] a continuously differentiable function $V_{1}(u, p)$ satisfying the following inequalities

$$
\begin{align*}
& \left.b_{1} \mid u+\rho\right)^{B} \leqslant V_{1}(u, p) \leqslant b_{2}|u+p|^{B},\left|\frac{\partial V_{1}}{\partial u_{j}}\right| \leqslant b_{4}|u+\rho|^{B-1} \\
& \left(\frac{d V_{1}}{d t}\right)_{(2.11)} \leqslant-b_{3}|u+p|^{B+v-1}, \quad\left|\frac{\partial V_{1}}{\partial \rho_{k}}\right| \leqslant b_{4}|u+\rho|^{B-1} \tag{2.12}
\end{align*}
$$

where B, b_{1}, b_{2}, b_{3} and b_{4} are positive constants.
Let us construct the function $V_{2}(\zeta)$ for the linear part of the system (2.7) which satisfies the inequalities

$$
\begin{gather*}
c_{1}|\zeta|^{2} \leqslant V_{2}(\zeta) \leqslant c_{2}|\zeta|^{2} \\
\left(\frac{d V_{2}}{d t}\right)_{0}=\sum_{8=l+2 r+1}^{n} \frac{\partial V_{2}}{\partial \zeta_{s}}\left(\lambda_{s} \zeta_{8}+\alpha_{8-1} \zeta_{s-1}\right) \leqslant-c_{3}|\zeta|^{2}, \quad\left|\frac{\partial V_{2}}{\partial \zeta_{8}}\right| \leqslant c_{4}|\zeta| \tag{2.13}
\end{gather*}
$$

Next we observe the changes of the function

$$
\begin{equation*}
V(u, \rho, \zeta)=V_{1}(u, \rho)+V_{2}(\zeta) \tag{2.14}
\end{equation*}
$$

along the discontinuous trajectories of the system (2.9) into which the
continuous trajectories of (0.1) are transformed in the neighborhood of the solution $z=z^{\circ}(t)$.

In the central regions of the space $(u, \rho, \zeta, \hat{\theta}, t)$, into which the central regions of the space (x, t) are mapped, the function $V(u, p, \zeta)$ satisfies the inequality

$$
\begin{equation*}
V(u, p, \zeta) \leqslant b_{2}|u+\rho|^{B}+c_{2}|\zeta|^{2} \tag{2.15}
\end{equation*}
$$

Let us now evaluate V^{*} with the ald of (2.9)

$$
\begin{equation*}
\left(\frac{d V}{d t}\right)_{(2.9)}=\left(\frac{d V_{1}}{d t}\right)_{(2.11)}+\left(\frac{d V_{2}}{d t}\right)_{0}+\sum_{k=1}^{r} \frac{\partial V_{1}}{\partial \rho_{k}} R_{k}+\sum_{j=1}^{l} \frac{\partial V_{1}}{\partial u_{j}} V_{j}+\sum_{i=l+2 r+1}^{n} \frac{\partial V_{2}}{\partial \zeta_{i}} z_{i} \tag{2.16}
\end{equation*}
$$

Because of the estimates (2.12), (2.13), (2.8) and (2.10) we obtain the inequalities

$$
\begin{gather*}
\left|\sum_{k=1}^{r} \frac{\partial V_{1}}{\partial \rho_{k}} R_{k}+\sum_{j=1}^{l} \frac{\partial V_{1}}{\partial u_{j}} V_{j}\right| \leqslant b_{4}\left(\alpha+\beta_{1}\right)|u+\rho|^{B-1}\left(|u+\rho|^{v+1}+|\zeta|^{2}\right) \tag{2.17}\\
\left|\sum_{i=1+2 r+1}^{n} \frac{\partial V_{2}}{\partial \zeta_{i}} Z_{i}\right| \leqslant c_{4}|\zeta| \gamma\left(|\rho+u|^{N}+|u+\rho|\left(|\zeta|+|\zeta|^{2}\right)\right. \tag{2.18}
\end{gather*}
$$

If $N \geqslant B+v$ and $|u+\rho|+|\zeta|$ are small enough, then we obtain, for (2.16), the estimate

$$
\begin{equation*}
\left.\left(\frac{d V}{d t}\right)()_{2.13}\right)<-d_{1}|u+\rho|^{B+v}-d_{2}|\zeta|^{2}<-\mu^{2}\left(|u| \rho|+|\zeta|)^{B+v}\right. \tag{2.19}
\end{equation*}
$$

where d_{1} and d_{2} are positive constants.
Since the sonstant B in the inequalities (2.12) is sufficiently large [7], it follows from (2.15) that

$$
\begin{equation*}
V(u, p, \zeta)<\mu_{1}^{2}(|u+p|+|\zeta|)^{2} \tag{2.20}
\end{equation*}
$$

Comparing the inequalitiés (2.19) and (2.20), we obtain

$$
\begin{gather*}
\frac{d V}{d t}<-\mu^{2}\left(\mu_{1}^{-2} V\right)^{1 / 2(B+v)} \tag{2.21}\\
V<V_{0}\left[1+V_{0}^{N_{1}} \beta\left(t-t_{0}\right)\right]^{-1 / N_{1}}, \quad \beta=N_{1} \mu^{2} \mu_{1}^{-2\left(N_{1}+1\right)}, \quad N_{1}=1 / 2(B+v+1) \tag{2}
\end{gather*}
$$

Let us now watch the changes of $V(L, p, \zeta)$ in the angular regions. Because the null solution of the system (2.11) is by hypothesis asymptotically stable, it will also be stable for the system

$$
\begin{gather*}
u_{j}=\sum_{m=v}^{N} V_{j}^{(m)}(u, p), \quad \rho_{k}=\sum_{m=v}^{N} R_{k}^{(m)}(u, \rho) \quad(j=1, \ldots, l ; k=1, \ldots, r) \\
\zeta_{i}=\lambda_{i} \zeta_{i}+\alpha_{i-1}+\zeta_{i-1}+\sum_{m=2}^{N} Z_{i}^{(m)}(u, \rho, \vartheta, \zeta) \quad(i=l+2 r+1, \ldots, n) \\
N>\left(N_{1}+1\right) B-1 \tag{2.23}
\end{gather*}
$$

To the continuous solution of the system (2.23) there corresponds a discontinuous solution of the system $(0.16),(0,18)$ of the first approximation of the N th order.

If we denote by η the vector $\eta=u+\rho+\zeta$, then $V\left(\eta^{+}\right)=V\left(\eta^{-}\right)$when $\eta^{+}=\eta^{-}$.

Thus,

$$
\begin{equation*}
V\left(x^{+}, t_{\alpha}\right)=V\left(x^{-}, t_{\alpha}\right)+o\left(|x|^{N+1}\right) \quad \text { for } \quad x^{+}=S\left(x^{-}\right)+o\left(|x|^{N}\right) \tag{2.24}
\end{equation*}
$$

Next, let us denote by $N\left(x_{1}, t_{1}\right)$ the point of intersection of a trajectory of the system (0.5) with the surface of discontinuities $\Phi_{a}(x, t)=0$, Then by the construction of the system of the first approximation

$$
\begin{equation*}
x=x^{+}+o\left(|x|^{N}\right) \tag{2.25}
\end{equation*}
$$

where x is a point on the trajectory of the system (0.5) for $t=t_{\alpha}$
From the inequalities (2.24) and (2.25) it follows that

$$
\begin{equation*}
V\left(x, t_{\alpha}\right)=V\left(x^{-}, t_{\alpha}\right)+o\left(|x|^{N+1}\right) \tag{2.26}
\end{equation*}
$$

This implies directly that

$$
\begin{equation*}
-x<V^{-N_{1}}\left(x^{-}, t_{\alpha}\right)-V^{-N_{1}}\left(x, t_{\alpha}\right)<x \tag{2.27}
\end{equation*}
$$

where x is an arbitrary small positive number.
Let us select a cylinder of radius δ so small that the time which the trajectory stays in any angular region be sufficiently small and that

$$
\begin{equation*}
x<\beta T \quad\left(T=\min \left|t_{\alpha+1}-t_{\alpha}\right|\right) \tag{2.28}
\end{equation*}
$$

The radius of the cylinder can be chosen so small that the planes $t=t_{\alpha}{ }^{*}=c^{1 / 2}\left[t_{\alpha+1}+t_{\alpha}\right]$ do not intersect the angular regions inside the cylinder C.

The coefficient of growth of $V(x, t)$ is finite [2] in the angular regions. Let us denote the largest coefficient of growth by Q. We take the initial point $x_{2}^{*}=x\left(t_{1}^{*}\right)$ inside the cylinder $V=\delta_{1}=\delta / Q$.

As t changes within the bounds $t_{1}{ }^{*} \leqslant t \leqslant t_{2}{ }^{*}$, the function $V(x, t)$, taken along the integral curve of the system (0.5), decreases in the central region to the point $\left(x_{1}, t_{1}\right)$ which is the intersection of the curve with the surface of discontinuity. Next, in the angular region, it can increase, but this increase will be compensated by jumps of the function for $t=t_{\alpha}$.

Indeed, because of (2.22)

$$
\begin{equation*}
V\left(x_{1}, t_{1}\right)<V_{1}\left[1+V_{1}^{N_{1}} \beta\left(t_{1}-t_{1}^{*}\right)\right]^{-1 / N_{1}}, \quad V_{1}=V\left(x_{1}^{*}, t_{1}^{*}\right) \tag{2.29}
\end{equation*}
$$

Furthermore,
$V\left(x^{-}, t_{\alpha}\right)<V\left(x_{1}, t_{1}\right)\left[1+V^{N_{1}}\left(x_{1}, t_{1}\right) \beta\left(t_{\alpha}-t_{1}\right)\right]^{-1 / N_{1}}<V_{1}\left[1+V_{1}^{N_{1}} \beta\left(t_{\alpha}-t_{1}^{*}\right)\right]^{-1 / N_{1}}$
Because of (2.27)

$$
\begin{equation*}
V\left(x, t_{\alpha}\right)<V\left(x^{-}, t_{\alpha}\right)\left[1-x V^{N_{1}}\left(x^{-}, t_{\alpha}\right)\right]^{-1 / N_{1}} \tag{2.31}
\end{equation*}
$$

Using (2.31) and (2.30), we obtain

$$
V\left(x, t_{\alpha}\right)<V_{1}\left\{1+V_{1}^{N_{1}}\left[\beta\left(t_{\alpha}-t_{1}^{*}\right)-x\right]\right\}^{-1 / N_{t}}
$$

In the next central region the function $V(x, t)$ will decrease according to (2.29),

$$
V_{2}=V\left(x_{2}^{*}, t_{2}^{*}\right)<V_{1}\left\{1+V_{1}^{N_{1}}\left[\beta\left(t_{2}^{*}-t_{1}^{*}\right)-x\right]\right\}^{-1 / N_{1}}<V_{1}
$$

since by hypothesis x satisfies the inequality (2.28).
If one takes into consideration that the coefficient of growth of $V(x, t)$ in the angular regions does nct exceed 0 , one may conclude that the integral curve, for $t_{1}{ }^{*} \leqslant t \leqslant t_{2}{ }^{*}$ passes through the cylinder $V=\delta$. Repeating the preceding argument for the following regions with $t_{2}{ }^{*} \leqslant t \leqslant t_{3}{ }^{*}, \ldots$ $\ldots, t_{i}{ }^{*} \leqslant t \leqslant t_{i+1}^{*}$ and so on, we obtain

$$
\begin{equation*}
V_{i+1}<V_{i}\left\{1+V_{i}^{N_{1}}\left[\beta\left(t_{i+1}^{*}-t_{i}^{*}\right)-x\right]\right\}^{-1 / N_{1}}<V_{i}\left[1+V_{i}^{N_{1}}(\beta T-x)\right]^{-1 / N_{i}}<V_{i} \tag{2.32}
\end{equation*}
$$

Because of the inequality (2.32), the sequence $\left\{V_{1}\right\}$ has a limit.
Let us suppose that this limit is not zero, i.e. $11 \mathrm{~m} V_{1}>0$ as $t \rightarrow \infty$. Then V must satisfy the inequality

$$
V \leqslant V\left[1+V^{N_{1}}(3 T-x)\right]^{-1 / N_{1}} \quad \text { or } \quad V \leqslant 0
$$

Thus, it is proved that $11 \mathrm{~m} V_{1}=0$ as $t \rightarrow \infty$; this implies the asymptotic stability of the solution $z=z^{\circ}(t)$ of the system (0.1).

The theorem asserts furthermore, that to answer the question on the stability, one must seek an approximation of order v, because the coefficients
of the system (2.11) depend only on the coefficients of an approximation of order v.

In conclusion let us consider the case when the matrix A has one characteristic number equal to zero, while the remaining characteristic numbers have negative real parts. In this case the system (2.11) will consist of one equation

$$
u_{1}^{*}=g u_{1} \underline{\nu}
$$

Then the true theorem reads as follows: if ν is an odd number, and $g<0$, then the solution $z=z^{\circ}(t)$ of the system (0.1) is asymptotically stable.

BIBLIOGRAPHY

1. Aizerman, M.A. and Gantmakher, F.R., Ustoichivost' po lineinomu priblizhenilu periodicheskikh reshenil sistemy differentsial'nykh uravnenil s razryvnymi pravymi chastiami (Stability with respect to a linear approximation of periodic solutions of a system of differential equations with discontinuous right-hand sides). Dokl.Akad.Nauk SSSR, Vol.116, Ne 4, 1957.
2. A1zerman, M.A. and Gantmakher, F.R., Ustoichivost' po lineinomu priblazheniiu periodicheskogo reshenila sistemy diffcrentsial nykh uravn nil s razryvnymi pravymi chastiami (Stability with respect to a linear approximation of a perioric solution of a system of differential equations with discontinuous right-hand sides). PNM Vol.21, No 5, 1957.
3. Tsypkin, Ia.z., Teoriia releinykh sistem avtomaticheskogo regulirovaniia (Theory of Relay Systems of Automatic Control). Gostekhizdat, 1955.
4. Livartovski1, I.V., Ob ustoichivosti reshenila sistemy differentsial'nykh uravnenil s razryvnymi pravymi chastiami (on the stability of the solution of a system of differential equations with discontinuous right-hand sides). PNM Vol.23, № 3, 1959.
5. Malkin, I.G., Teorila ustoichivosti dvizhenila (Theory of Stability of Motion). Gostekhizdat, 1952.
6. Zubov, V.I., Metody A.M.Liapunova i 1 kh primenenie (The Methods of A.M. Liapunov and their Applications). Izd.1eningr.Univ., 1957.
7. Krasovskii, N.N., ob ustoichivosti po pervomu priblizhenilu (on stability by the first approximation). PNN Vol.19, № 5, 1955.

[^0]: *) Here, and in what follows we assume unless explicitely stated otherwise that the indices of summation run through all possible values satisfying the inequalities $1 \leqslant m_{1}+\ldots+m_{n} \leqslant N$.

[^1]: *) It is not difficult to prove that Equations (0.18) will hold for the lower as well as for the upper angular regions.

