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In the papers cl to 43 there was found a linear approximation for a system 
of differential equations z*- /(r,t) with discontinuous right-hand sides, 
and there were proved certain theorems on the stability of continuous solu- 
tions of this system. Below we consider the stability of periodic solutions 
of this system In critical cases. 

Let the system of differential equations be given in vector form 

2' = j (2, t) (0.9 

The function J(x,t) is given in an n+l dimensional curvilinear cylinder 
C whose axis Is a continuous Integral curve z = r"(t) of the system (0.1). 
Furthermore, the function f(z,t) Is periodic of period T . 

The hypersurfaces (the surfaces of discontinuity) 

F, (2, t) = 0, [F,(z, t + T) = F, (2, t)l WJ 

divide the Gyllnder C Into regions 
at the points M when t&t 

H, and Intersect the curve a= z*(t) 
The right-hand 

Eatlsfy the foll:wlng conditl%ns. 
sides of the system (0.1) 

!Che.functions / (I t) are continuous in each of the regions H 
(iniiuding their bounda%ei) and are continuously differentiable up togthe 
order N , while during their passage through the surfaces (0.2), they and 
all their partial derivatives up to the Nth order, have dlscontlnultles of 
the first kind only. 

2. In the angular regions between the surfaces (0.2) and the planes 
t = ta, the following conditions are satisfied: 

The signs, plus and minus, 
t = t, - 0. 

correspond to the values t = t, -k 0 and 

3. The surfaces (0.2) are continuous, and at the points hi 
smooth up to the order N , 

they are 
and along the Integral curve 2=2 @(t) 
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Let us introduce the variable r = r-z'(t) . The system (0.1) takes on 
the form 

2' = P (r, t), P (2, 4 = f (zO + 2, t) - f w, t) (0.5) 
and the equations of the surfaces of discontinuity become 

mD, (2, t) = 0, d'= (r, t) = F, (z’ + z, t) (0.6) 

It is obvious that the stability of the solution z = z0 (t) z z" (t + 7) 
of the problem (0.1) is equivalent to the null solution of the system (0.5). 
$e surfaces (0.6), In contrast to (0.2), will not be smooth g thzdpoints 

but will have 
t,"\ t d t,tl (In th 

breaks. At the intersections of regions 
e sequel we shall call these regions the ceftral regions) 

the system (0.1) can be written in the form (*) 

Zj,’ = fi (Z’, (zl - Zl”)m’* s * (Zn - Z,“)mn + Ri (2, t) (0.7) 

The partial derivatives occurring In Formula (0.7) are contunuous in each 
interval 1, f t d &+I, the functions R,(a,t) satisfy the conditions 

(0.8) 

N+l 
IRi(Z7 t)I<clml V 12 1 = l/(z1- zl")* + . ..+(z. - znO)S (a = const>O) 

The surfaces of discontinultles can be written, to within lnfiniteslmals 
of order higher than N , In the form 

t _-t=~ham'...mn21m'...znmn 

(In the neighborhood of thi point M, of the lowest angular region). 

(0.9) 

We shall seek an approximate solution of Equation (0.5) in the neighbor- 
hood of the point P(C, t,) which lies on the surface of dlscontinultles in 
the neighborhood of the point Ma In the lower angular region 

N-l 

xi = 5i + 2 (t - tl)m+l dmPi (51 ‘1) 

m=O (m + 1) ! dtm 
(0.10) 

The point P(C, tl) lies on the surface of dlscontinuitles. Therefore, 

t, - tl = z‘ hgli'l.+l c,mi. . . c,,“‘” = G (5) (O.il) 

to within lnflnlteslmals of order higher than N . 
Now, If we assume t - t, In (O.lO), and If we replace 

expression in (O.ll), we obtain 
t,- t, by Its 

N-l 

xi=ci + 2 Gm-'-'(C) <pi[c, t, -G(Q]+pi*(~,t,) 
,n_=O trn + 1) ! dt 

(0.12) 

We expand the last expression In increasing powers of Cl,..., Cn, and 
we restrict the expansion to terms of order not greater than N relative 
to C1,...9 C” xi+ = 2 ~;“~-“‘ng4_ . . ;,,% (0.13) 

The coefficients b?nl,..lJi,, depend only on those ll~..“i~~ and jjl..,j,,, for 
which S, + . . . f S, .‘< m, j1 f . . . -i ;, < TN (I)) 1,1, -i- . ,. . 7 III”). "In partl- 
cular, If ml+ . . . + m.- 1, we obtain 

*) Here, and In what follows we assume unless expllcitely stated otherwise. 
that the Indices of summatlon run through all possible values satisfying 
the inequalities I<II~~+.,. +n,,,<N. 
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bfO...O1O...O, b. ,j = 6ij + Eihj (&j IS Kronecker's delta) 

Let us now consider the system of differential equations 

(0.14) 

(0.15) 

We shall look for a solution of this system in the neighborhood of the 
point P(c, tl) which lies on the surface of discontinulties. Repeating the 
evaluations which were performed above, we obtain 

xi- = ci + 2 cim”‘mn clml_ , . cnrnn (2Bml+. ..+m,gN) (0.16) 

The coefficients akin..% are evaluated by the same rules as the bp...m,,. 

Equation (0.16) is Inverted (solved) to within infinitesimals of order 
not higher than N 

gi = 2 d*m-‘mn (x1-p . . . (x*-)mn (0.17) 

Now, if we substitute c1 from (0.17) Into (0.13) and if we limit our- 
selves to lnflnlteslmals of order not hinher than N . then (0.13) takes on 
the form 

. -’ 

The system (0.15), together with the conditions of dlscontinulties 
we will call a system of first approximation of the Nth order (*). 

In particular, for N = 1 , the system (0.15), (0.18) will take on 
form 

Xi' = n afi (so, t) 
z 
j=t azj 

xj 9 Xi+= xi- + 5 EihjSj- 
j=l 

because of (0.14). 

This system of the first approximation was considered in [21. The 
(0.16),(0.18) will, from now on, play a fundamental role. 

(0.18) 

(0.18)s 

the 

(0.19) 

system 

1. If we let X(t) denote the fundamental matlx of the system (0.19), 
then we shall have Equation 

x(t + x) = X(QU (I.0 

where U Is a constant nonsingular matirx. Let us apply the transformation 

to (0.5). 
x = L (4 Y, L(t) = X (t) emAt, A= fInU 

The system (0.5) will take on the form 

Y’ = P (Y, a q (y, t) = L-‘p - L-32. y 

If one takes the matlx A in the Jordan form, then the system (1.2) will 
have the form N 

31; = &Yi + ai_l 1-1 Y. + 27 Y~‘“‘(Y, t)+Ri* (Y, t) (1.3) 
?n=2 

in central regions. 

Here, I Rt* (yl 4 I < ~1 I Y I Nt19 Yim”‘(y, 4 are forms of order m in the vari- 
ables y, ,...,vn wlth periodic coefficients which are discontinuous at t-t,. 

I& us transform the system (1.3) with the aid of the nonlinear transfor- 
mation to a form In which the terms of order less or equal to N have con- 
stant and everywhere equal coefflclents. 

*) It Is not difficult to prove that Equations (0.18) will hold for the 
lower 3s well as for the upper angular regions. 
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Such a transformation can be performed If the characteristic numbers of 
the matrix A and the period ? are not connected by any relations of the 
form 

m,h, + . . . + m,h,- A, = f 2nit7l (1.4) 

where m, ,... m, are nonnegative Integers. 

Let us assume that these conditions are fulfilled. We shall seek a trans- 
formation In the form 

yi = Ui +~A**."m~(t)1417n' l * a 14nmn (2<ml+... +m,BN) (1.5) 
where the A?"'%(t) are periodic functions of period T which are dls- 
continuous at t I: 'tc 

In the new variables the system (1.3) takes on the form 

Q'= &at + ai-++ +xci 
m,...m, 

lQm*. . . u, mn + ui t”s 4 

(2<ml+...+m,<N) W) 

The conditions on the dlscontinultles for the system of the first approxl- 
matlon of order N of the system (1.3) has the form 

yi+ = y,- + .&m‘**.mn(yl-)m'. . . (yJ”” (1.7) 

We will determine the discontlnuitles of the functions A?..."'s(t) SO that 
the conditions of dlscontlnultles of the system of first approxlmatlon of 
the Nth order (1.6) may have the form 

iii+ zzz u-i (1.8) 
to within terms of order higher than N . 

Let us show that this can be done. Indeed, Equation 

must be satisfied up to within terms of order higher than N 

Equating the coefficients of like powers of we obtain the 
reaulred condition% on the dlscontlnultles. In ~qu&&'q;.q) the quantities 
A?'l'l."% (t --@are assumed to be Mown; therefore Ap...“‘n(t, i- 0) Is uniquely 
afetermln%d. 

Equation (I.q), just as (I-8), must be taken not in the exact sense, but 
with an accuracy up to infinitesimals of order higher than N . 

In order to be able to reduce the system (1.3) to the form (1.6), lt 1s 
necessary [5] that the coefficients Ap,"l"'mn(t) of the transformation (1.5) 
satisfy Equations 

$_ Aiml-‘m, +(i m,h, - hi Aiml”*mn zzz - ai m”“mn + Bi%“‘mn (t) (1.10) 

s=1 

Here, B!s~...mn (t) are linear functions of the already known quantities 
Akl..akn (t)' bith periodic (of period T) coefficients which are discontinuous 
at' t = to . We shall seek a periodic solution of the system (l.lO), which 
ha8 dlscontlnultles at t I t, determined by (1.9). 

1 Let us assume that all coefficients of the transformation ( 
appear In B%...mn(t) are periodic. We will show that then the 
can be selebted so that they are periodic. Indeed, if m&l+ 
-Ai= 0, then, In order that the Ap.,.mn(t) be periodic, it 
and sufficient that 

.5A w$lch 
Ai g ,nit) 
. . 
Is necL:ary 
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where h is the number of surfaces of dlscontlnultles. 

All integrals exist because tzAd$scontlnulties of the lntegrands are of 
the first order. If, however, + m,h,-- hi#O, then Equation 
(1.10) has a periodic solution fok in arbitrary constant u~...~w Therefore, 
one can set aF’“‘“ft = 0. 

Thus, one can determine successively the coefficients of the transforma- 
tion (1.5). This transformation Is such that stability with respect to the 
variables y, Is equivalent to stability with respect to the variables u,. 

It Is also obvious that the following estimate holds for the terms U,,(u,t) 
of the system (1.6) 

I ui (us t) I < aI I 24 I 
N+I 

(IuI= vlw+...+l~nl~) (i.12) 

2. Let us now go over to the Investigation of the stability of the solu- 
tion z = z"(t). Suppose that L of the characteristic numbers of the 
matrix ,4 are equal to zero, and 2F of the characteristic numbers are 
pure Imaginary 

Ij=o (j=i,...,Z), &+l=@k v?, &+&=-@k vz (k=i,...,r) 

Let us assume that there exists no relation of the form 

m,o, + . . . + m,O, = 0 for arbitrary Integers ml,... , m, (2.1) 

between the characteristic frequencies. 

Furthermore, let us assume that to the L null values of the character- 
istic numbers of the matlx A there correspond simple elementary divisors. 
The rest of the characteristic numbers of the matrix A have negative real 
parts (actually, If only one of the characteristic numbers of the matrix A 
Is osltive then the solution 
1237. The pdcullarlty of the s 

will be unstable, as was shown In 
(to which the system (0.1) can be 

reduced In the central regions Is the fact that the variables al+~,.+l,. . . , u, 
of the stable part of the system enter into the critical part of the system 
only In the terms Ui(u, t)(i = 1,. .., 2 i- 24. 

Therefore, one can write the critical part of (1.6) more precisely In the 
form 

'fi' = h*u*+~:i~...ml+?rO...O ulml . . *$y + Ui(U, t) 

(i = 1, 2, . . . ) l-l-2~ 2Gmlf . ..+q+.,dN) (2.2) 

Now, we replace (in the system (2.2)) the variables which correspond to 
the pure Imaginary characteristic numbers of the matrix A by 

it3 

'l+k =Pkc k* 
48 

Ul+r+lc = pke 
k (2.3) 

Then the system (2.2) takes the form 

N 
Pk.= x Rk(m+l, . . . . Uz, Pl,...,P,)+ Rk(a, PI 6, t) 

m=” 
N 

(2.4) 

fik’ = x ek’“’ (“l* * - UZ, pl, . . * , P,) + ek (u, PI 6, t) + ok 

m=2 

Here Vtrn) (u, P), Rjcrn’ (4 P) and (!I tm)(u, P) are mth order forms with con- 
stant real'coefflclents (because theklnitlal system (0.1) was real). 
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After the transformation (2.3), the stable part of the system takes on 
the form 

Ui’ = hilLi + a 
i-1%1+ $ Uk(m)(u~ Pt 6) + u,(u, p, 6, t) (2.5) 

-2 

where vc,"%4 P, 6) are mth order forms In the variables cl,. . ., Ul,pl,... 
- * * Prr ul+zr+l~ * - * t u, with perlodlc coefflclents which are contlnuou& in 6 . 

As Is known [5 and 61 one can, by changing only the stable variables by 
means of Formulas 

ui = 5i + 'pi (% . * * , “2, PI, . . . I pr, 6,. . . 6,) C-W 

Insure that the expansion of the right-hand side of the stable part of the 
system of equations, for fi+sr+1= * * . = fn= 0, 
cal part of the system to a degree exceeding N . 

contain terms of the crltl- 
After the application of 

the transformation (2.6), the system (2.5) takes on the form 

6;= Ai& + $-J&1+ &C”* Ps*fls fl t) (2.7) 

where -4 (u, P, 6, 5, t) satisfy the Inequality 

Izi(W Pr fi,L t)I<~(lP+"lN+lP+ull~l+1512) (r = const >O) (2.8) 
for small lu + PI + ICI . 

In consequence of the transformation, the system (O.l), In the central 
regions, takes on the form 

Uj’ = Yj(“) (Us P) + Vj (“t Pt 6, 5, t)f 8,’ = ok + 0, (% P, 8, f, t, 

Pk.= @“)(4 P)+ Rk(% P, 6, t, t)t 6i'= &fi + ai_Xi_l+ %(a* P, 69 57 t, 
(2.9) 

here Vj (~7 P, 6, L t) and Rb (~9 P, 6, 6, t) are periodic functions In 6 
and t, and they satisfy, for small enough lu + PI + 1~1, the lnequalltles 

I Rj (UT P, 6, Cs t) I <a ( I P + U I “” + I f, I a) (a = const > 0) 

l~j(~,P~~~6~t)I<~l(lP+UI”+1+IIIa) (PI = const > 0) (2.10) 

One can prove the followlng theorem. 

Theorem . If the null solution of the system 

u; = Vj(")(u, p), Pk.= #")(a, P) (2.11) 

IS asymptotically stable then the null solUtlOn of the System (2.9) 1s asymP- 
totlcally stable. 
solution of the system (2.11), there exists 7 a continuously differentiable 

Indeed, because of the asrptotlc stability of the null 

function V,(u,p) satisfying the following lnequalltles 

bl lucp)Bql (‘4 P) < h I u + P I B, 

dvl 

(2.12) 

( 1 -&. (a,ll)B - bsl u + P IB+“-l, I I 
e < br I u +P lB-’ 

where B, bl, b,, b3 and b, are positive constants. 

Let us construct the function V,(C) for the linear part of the system 
(2.7) which satisfies the lnequalltles 

Cl I I; I* < vs (5) d ca I 6 IS 

(2.13) 

s=1+!ar+ 1 

Next we observe the changes of the function 

v (4 PI 5) = v, (4 P) + v, (5) (2.14) 

along the discontinuous trajectories of the system (2.9) Into which the 



Solutions of a system of differential equations 1105 

continuous trajectories of (0.1) are transformed In the neighborhood of the 
solution 2 = 9(t) . 

In the central regions of the space 
regions of the space (x,t) are mapped, 

(u,p,6,6,t), Into which the central 
the function Y(u,p,6) satisfies the 

inequality 
v (a, P, 5) d b,lu + PIB + cn161Z (2.15) 

Let us now evaluate Y' with the aid of (2.9) 

k=l j=l i=1+2rt1 

Because of the estimates (2.12),(2.13),(2.8) and (2.10) we obtain 
Inequalities 

the 

(2.17) 

(2.18) 

If N>B+v and 
(2.16), the estimate 

lu+Pl+lSI are small enough, then we obtain, for 

( ) & (2.13)<4l lu + PIB+” - da 161a < - P” (1~ -1- P I + I~I)B+’ (2.19) 

where d, and da are positive constants. 

Since the sonstant B In the lnequailtles (2.12) Is sufflclently large 
(71, It follows from (2.15) that 

V(% P? 5)< W(I~ + P I+ IL !I2 (2.20) 

Comparing the lnequalltlt% (2.19) and (2.20), we obtain 

dv z < _ Pz(P1-zv)W+V) 

v <vo [i _tVoN'P (t - to)]-"N1, p =N~PL~P,-~(NI+~), N1 = ‘/p (B + v + i) (2.22) 

(2.21) 

Let us now watch the changes of Y u,p,C) 
f 

In the angular regions. Because 
the null solution of the system (2.11 Is by hypothesis asymptotically sta- 
ble, It will also be stable for the system 

24; = ; vj(m+u, p), px'= i; R/%4, p) (j = 1,. .., 1; k = 1, . . . . r) 
m=v ?n=Y 

R’ 

<i’ = hibi + ai-I+ 5i-lf 2 ZJrn'(u, PI 69 6) (i = 1+ 2r + I,. . . , n) 
m=2 

N>W+i)B--1 (2.23) 

To the continuous solution of the system (2.23) there corresponds a dls- 
continuous solution of the system (0.16),(0.18) of the first approximation 
of the Rth order. 

If we denote by TJ the vector n - IA + P + 6 , then V(n') = V(n-) when 
n*- TJ-. 

!rhus, 
V(z',t,)= V(2-, fa)$ o(I z (N+l) for r+=s(z-)+O(IZp) (2.24) 

Next, let us denote by N(x,,t,) the point of Intersection of a trajectory 
of the system (0.5) with the surface of dlscontlnuitles @,(r,t) = C, Then 
by the construction of the system of the first approximation 
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x=z+ fo(@) 

where x Is a point on the trajectory of the 

From the inequallties (2.24) and (2.25) It 

(2.25) 

system (0.5) for t = tc 

follows that 

V(x, ta) = v (x-, t&J + 0 (I x I”+‘) (2.26) 
This implies directly that 

- X<FI-Nl(x-, to)- Fl(Z, to)< x (2.27) 

where x Is an arbitrary small positive number. 

Let us select a cylinder of radius 6 so small that the time which the 
trajectory stays in any angular region be sufficiently small and that 

x<PT (T = min 1 t,+l - tEI) (2.2.8 

The radius of the cylinder can be chosen so small that the planes 
t = t,* = 

'/a [lo+1 
cylinder C . 

+ toll do not intersect the angular regions inside the 

The coefficient of growth of V(x,t) is finite [2] In the angular regions. 
Let US denote the largest coefficient of growth by Q . We take the initial 
point xf = r(&*) Inside the cylinder V - bI= 6/Q . 

As t changes within the bounds t,* < t Q t,* ,the function V(x,t), taken 
along the inte ral curve of the system (0.5), decreases in the central region 
to the point ? sl,t,) which Is the intersection of the curve with the surface 
of discontinuity. Next, In the angular region, it can Increase, but this 
Increase will be compensated by jumps of the function for t I tc . 

Indeed, because of (2.22) 

V (XI, 11) < Vl [I + VINZ p (tl - tl*)]-’ ’ N1, v1= v (Xl,, V) (2.29) 

Furthermore, (2.30) 

V (x-, t&J < v (h, h) [i + VN’ (21, h) p (ta - tl)]-’ ’ N1 <VI [I + VINq?l (ta - tl’)p Nr 

Because of (2.27) 

V(X? t,)< V(m_, t,)[z -xPI(lr, ta)]-“Nl (2.31) 

Using (2.31) and (2.30), we obtain 

V(2, &)<Vl{l + V,NI[p(te -V) -~xl)-“N’ 

In the next central region the function V(x,t) will decrease according 
to (2.291, 

va = v (x2*, ta*)<Vl{l + vpt [p (&' - tp) - X]}-"NI<V1 

since by hypothesis w satisfies the inequality (2.28). 

If one takes Into consideration that the coefficient of growth of V(X,t) 
in the angular regiona does not exceed Q , one may conclude that the inte- 
gral curve, for t,+< t< t,* passes through the cylinder V = 6 . Repeating 
the preceding argument for the following regions with fs* < t < t,*, . . . 
. ..) ti* < t \<J*~+~ and so on, we obtain 

I'i+, < ,Vi (1 + ViNl IP (ti+l* - ti*) - XI}-” “I< Vi[l + ViN’(BT - .)]-“N’< Vi (2.32) 

Because of the Inequality (2.32), the sequence (V,) has a limit. 

Let us suppose that this limit is not zero, i.e. llmV,>O as t-m. 
Then V must satisfy the Inequality 

V<VII+VN’(~T-x)]-“N’ 01 1’ < 0 

Thus, It is proved that llm Vi- 0 as t - - ; this implies the asymP_ 
totic stability of the solution t = z”(t) of the system (0.1). 

The theorem asserts furthermore, that to answer the question on the sta- 
bility, one must seek an approximation of order v , because the coefficients 
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of the system (2.11) depend only on the coefficients of an approximation of 
order v . 

In conclusion let us consider the case when the matrix A has one char- 
acteristic nuknber equal to zero, while the remain1 
have negative real parts. In this case the system 9 

characteristic numbers 
2.11) will consist of 

one equation 
Ul' = gulr 

Then the true theorem reads as follows: 
then the solution z - zD 

If v Is an odd number, and g<O, 
(t) of the system (0.1) Is asymptotically stable. 
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